PUBLICATIONS: (*Corresponding author; total cites: >2400, H index 25) (listed in “Most Cited Chinese Researchers” for 2014, 2015 in energy, Elsevier-Scopus, Scopus Author ID: 7402681505).


  1. 1. H Li, Zhen Fang*, J Luo, S Yang, Efficient Production of Methyl Levulinate from Carbohydrates Catalyzed by a Magnetic Zirconia-Zeolite Hybrid under Microwave Irradiation,  Applied Catalysis B: Environmental, in revision after review (May 2016).
  2. 2. XK Li, Zhen Fang*, J Luo, TC Su, Co-production of Furfural and Easily Hydrolysable Residue from Sugarcane Bagasse in 2-Methyltetrahydrofuran/Aqueous Biphasic System, ACS Sustainable Chemistry & Engineering, in revision after review (May 2016).
  3. 3. H Li, Zhen Fang*, RL Smith Jr., S Yang, Efficient Valorization of Biomass to Biofuels with Bifunctional Solid Catalytic Materials, Progress in Energy and Combustion Science,  55, 98–194 (2016).
  4. 4. D Jiang, Zhen Fang*, SX Chin, XF Tian, Biohydrogen Production from Hydrolysates of Jatropha Hulls and Sugarcane Bagasse with Clostridium Butyrium, Scientific Reports6:27205, DOI: 10.1038/srep27205 (2016).
  5. 5. XF Tian, L Rehmann, C Xu, Zhen Fang*, Pretreatment of Eastern White Pine (Pinus Strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions, ACS Sustainable Chemistry & Engineering, 4(5), 2822-2829 (2016).
  6. 6. M Huang, J Luo, Zhen Fang*, H Li, Biodiesel Production Catalyzed by Highly Acidic Carbonaceous Catalysts Synthesized via Carbonizing Lignin in Sub- and Super-critical Ethanol, Applied Catalysis B: Environmental, 190, 103–114 (2016).
  7. 7. F Zhang, Xue-Hua Wu, Min Yao, Zhen Fang*, YT Wang, Production of Biodiesel and Hydrogen from Plant Oil Catalyzed by Magnetic Carbon-Supported Nickel and Sodium Silicate, Green Chemistry18, 3302-3314 (2016).
  8. 8. H Li, Zhen Fang*, S Yang, Direct Conversion of Sugars and Ethyl Levulinate into γ-Valerolactone with Superparamagnetic Acid-Base Bifunctional ZrFeOx Nanocatalysts, ACS Sustainable Chemistry & Engineering, 4(1), 236-246 (2016).
  9. 9. H Li, Zhen Fang*, S Yang, Direct Catalytic Transformation of Biomass Derivatives into Biofuel Component γ-Valerolactone with Magnetic NiZr Nanoparticles, ChemPlusChem, 81, 135-142, (2016).
  10. 10. TC Su, Zhen Fang*, F Zhang, J Luo, XK Li, Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave, Scientific Reports, 5, 17538, (2015).
  11. 11. Zhen Fang*, How Can We Best Solubilize Lignocellulosic Biomass for Hydrolysis? Biofuels Bioproducts and Biorefining, 9, 621–622 (2015) (invited editorial).
  12. 12. F Zhang, Zhen Fang*, YT Wang, Biodiesel Production Direct from High Acid Value Oil with a Novel Magnetic Carbonaceous Acid, Applied Energy, 155, 637–647 (2015).
  13. 13. YT Wang, Zhen Fang*, F Zhang, BJ Xue, One-step Production of Biodiesel from Oils with High Acid Value by Activated Mg-Al Hydrotalcite Nanoparticles, Bioresource Technology, 193, 84-89 (2015).
  14. 14. F. Zhang, Zhen Fang*, Y.T. Wang,  Biodiesel Production Directly from Oils with High Acid Value by Magnetic Na2SiO3@Fe3O4/C Catalyst and Ultrasound, Fuel, 150, 370–377  (2015).
  15. 15. SX Chin, CH Chia, S Zakaria, Zhen Fang, S Ahmad, Ball Milling Pretreatment and Diluted Acid Hydrolysis of Oil Palm Empty Fruit Bunch (EFB) Fibres for the Production of Levulinic Acid, Journal of the Taiwan Institute of Chemical Engineers, 52, 85–92 (2015).
  16. 16. L.Q. Jiang, Zhen Fang*, Z.L. Zhao, F. He, H.B. Li, 2,3-Butanediol and Acetoin Production from Enzymatic Hydrolysate of Ionic Liquid-pretreated Cellulose by Paenibacillus polymyxaBioresources, 10 (1), 1318-1329 (2015).
  17. 17. R.L. Wang, J.C. Wang, R.H. Xu, Zhen Fang, A.Z. Liu, Oil Production by the Oleaginous Yeast Lipomyces starkeyi using Diverse Carbon Sources, Bioresources, 9(4), 7027-7040 (2014).
  18. 18. F. Guo, Zhen Fang*, Shape-controlled Synthesis of Activated Bio-chars by Surfactant-templated Ionothermal Carbonization in Acidic Ionic Liquid and Activation with Carbon Dioxide, Bioresources, 9(2), 3369-3383 (2014).
  19. 19. S.X. Chin, C.H. Chia, Zhen Fang*, S. Zakaria, X.K. Li, F. Zhang, A Kinetic Study on Acid Hydrolysis of Oil Palm Empty Fruit Bunch (EFB) Fibres Using a Microwave Reactor System,Energy & Fuels28 (4), 2589–2597 (2014).
  20. 20. B.J. Xue, J. Luo, F. Zhang, Zhen Fang*, Biodiesel Production from Soybean and Jatropha Oils by Magnetic CaFe2O4-Ca2Fe2O5-Based Catalyst, Energy,  68, 584-591 (2014).
  21. 21. S.P. Fan, L.Q. Jiang, C.H. Chia, Zhen Fang*, S. Zakaria, K.L. Chee, High Yield Production of Sugars from Deproteinated Palm Kernel Cake under Microwave Radiation via Dilute Sulfuric Acid Hydrolysis, Bioresource Technology153, 69-78 (2014).
  22. 22.  J. Luo, Zhen Fang*, R.L. Smith Jr., Ultrasound-enhanced Conversion of Biomass to Biofuels, Progress in Energy and Combustion Science41, 56-93 (2014). (Times Cited: 21, Cites/Year = 21)
  23. 23. Y.D. Long, Zhen Fang*, T.C. Su, Co-production of Biodiesel and Hydrogen from Rapeseed and Jatropha Oils with Sodium Silicate and Ni Catalysts, Applied Energy, 113, 1819-1825 (2014). (Times Cited: 12, Cites/Year = 12)
  24.  24. L.Q. Jiang, Zhen Fang*, X.K. Li, J. Luo, S.P. Fan, Combination of Dilute Acid and Ionic Liquid Pretreatments of Sugarcane Bagasse for Enzymatic Saccharification, Process Biochemistry48, 1942-1946 (2013).
  25.  25. L.Q. Jiang, Zhen Fang*, X.K. Li, J. Luo, Production of 2,3-Butanediol from Cellulose and Jatropha Hulls after Ionic Liquid Pretreatment and Dilute-Acid Hydrolysis, AMB Express, 3:48 (2013).
  26. 26.  F. Zhang, Zhen Fang*, Hydrolysis of Cellulose to Glucose at the Low Temperature of 423 K with CaFe2O4-based Solid Catalyst, Bioresource Technology124, 440–445 (2012).
  27.  27. Y.D. Long, Zhen Fang*, Hydrothermal Conversion of Glycerol to Chemicals and Hydrogen: Review and Perspective, Biofuels Bioproducts and Biorefining6, 686-702 (2012).
  28. 28.  F. Guo, Zhen Fang*, T.J. Zhou, Conversion of Fructose and Glucose into 5-Hydroxymethylfurfural with Lignin-Derived Carbonaceous Catalyst under Microwave Irradiation in Dimethyl Sulfoxide-Ionic Liquid Mixtures, Bioresource Technology112, 313-318 (2012). (Times Cited: 35, Cites/Year = 11.7)
  29. 29. C.Y. Yang, Zhen Fang*(co-first-author), B. Li, Y.F. Long, Review and Prospects of Jatropha Biodiesel Industry in China, Renewable & Sustainable Energy Reviews16, 2178-2190(2012). (Times Cited: 38, Cites/Year = 12.7)
  30.  30. F. Guo, Zhen Fang*, C. Xu, R.L. Smith Jr., Solid Acid Mediated Hydrolysis of Biomass for Producing Biofuels, Progress in Energy and Combustion Science38, 672-690 (2012). (invited review). (Times Cited: 44, Cites/Year = 14.7)
  31. 31.  L.Q. Jiang, Zhen Fang*, F. Guo, L.B. Yang, Production of 2,3-Butanediol from Acid Hydrolysates of Jatropha Hulls with Klebsiella Oxytoca, Bioresource Technology107, 405-410 (2012).
  32. 32. X.F. Tian, Zhen Fang*,F. Guo, Impact and Prospective of Fungal Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis, Biofuels Bioproducts and Biorefining6, 335–350 (2012). (invited review).
  33. 33. F. Guo, N.N. Wei, Z.L. Xiu, Zhen Fang, Transesterification Mechanism of Soybean Oil to Biodiesel Catalyzed by Calcined Sodium Silicate, Fuel, 93:468-472 (2012).
  34. 34. X.F. Tian, Zhen Fang*, D. Jian, X.Y. Sun, Pretreatment of Microcrystalline Cellulose in Organic Electrolyte Solutions for Enzymatic Hydrolysis, Biotechnology for biofuels4:53 (2011).
  35. 35. F.L. Pua, Zhen Fang*, S. Zakaria, C.H. Chia, F. Guo, Direct Production of Biodiesel from High-Acid Value Jatropha Oil with Solid Acid Catalyst Derived from Lignin, Biotechnology for biofuels4:56 (2011)
  36. 36. Zhen Fang*, F. Zhang,H.Y. Zeng, F. Guo, Production of Glucose by Hydrolysis of Cellulose at 423 K in the Presence of Activated Hydrotalcite Nanoparticles, Bioresource Technology102, 8017-8021 (2011).
  37. 37. Y.D. Long, F. Guo, Zhen Fang*, X.F. Tian, L.Q. Jiang, F. Zhang, Production of Biodiesel and Lactic Acid from Rapeseed Oil Using Sodium Silicate as Catalyst,  Bioresource Technology102, 6884-6886 (2011).
  38. 38. F. Guo, Zhen Fang*, X.F. Tian, Y.D. Long, L.Q. Jiang, One-step Production of Biodiesel from High-acid Value Jatropha Oil in Ionic Liquids, Bioresource Technology102, 6469-6472 (2011). (Times Cited: 41, Cites/Year = 10.3)
  39. 39. Zhen Fang*, Noncatalytic Fast Hydrolysis of Wood, Bioresource Technology102, 3587-3590 (2011).
  40. 40. X. Den, Zhen Fang*, Y.H. Liu, C.L. Yu, Production of Biodiesel from Jatropha Oil Catalyzed by Nanosized Solid Basic Catalyst, Energy, 36, 777-784 (2011). (Times Cited: 91, Cites/Year = 22.8)
  41. 41. R.L. Smith, Jr., Zhen Fang, Properties and Phase Equilibria of Fluid Mixtures as the Basis for Developing Green Chemical Processes, Fluid Phase Equilibria302, 65-73 (2011) (invited review).
  42. 42.  Zhen Fang*, R.L. Smith Jr., J.A. Kozinski, T. Minowa, K. Arai, Reaction of D-Glucose in Water at High Temperatures (410 oC) and Pressures (180 MPa) for the Production of Dyes and Nano-particles, The Journal of Supercritical Fluids56, 41-47 (2011).
  43. 43. X. Den, Zhen Fang*, Y.H. Liu, Ultrasonic Transesterification of Jatropha curcas L. Oil to Biodiesel by a Two-step Process, Energy Conversion and Management51, 2802-2807 (2010). (Times Cited: 81, Cites/Year = 16.2)
  44. 44. C.Y. Yang, X. Den, Zhen Fang*, D.P. Peng, Selection of High-Oil Yield Seed Sources of Jatropha curcas L. for Biodiesel Production, Biofuels1(5), 705-717 (2010).
  45. 45.  R.L. Smith, Jr., Zhen Fang, Techniques, Applications and Future Prospects of Diamond Anvil Cells for Studying Supercritical Water Systems, The Journal of Supercritical Fluids47, 431-446 (2009) (invited review).
  46. 46. Zhen Fang*, C. Fang, Complete Dissolution and Hydrolysis of Wood in Hot Water , AIChE Journal54(10), 2751-2758 (2008).
  47. 47.  H. Assaaoudi, Z. Fang, I.S. Butler, and J.A. Kozinski, Synthesis of Erbium Hydroxide Microflowers and Nanostructures in Subcritical Water, Nanotechnology19 185606 (8pp) (2008).
  48. 48. Zhen Fang*, T. Sato, R.L. Smith Jr., H. Inomata, K. Arai, and J.A. Kozinski, Reaction Chemistry and Phase Behavior of Lignin in High-Temperature and Supercritical Water, Bioresource Technology99(9), 3424-3430 (2008). (Times Cited: 107, Cites/Year = 15.3)
  49. 49. Zhen Fang*, T. Minowa, C. Fang, R.L. Smith Jr., H. Inomata, and J.A. Kozinski, Catalytic Hydrothermal Gasification of Cellulose and Glucose, International Journal of Hydrogen Energy, 33(3),  981- 990 ( 2008 ).
  50. 50. Z. Fang*, H. Assaaoudi, A. Sobhy, M .M. Barsan, I.S. Butler, R.I.L. Guthrie, J.A. Kozinski, Use of Oxygen and Methanol in Promoting the Destruction of Decachlorobiphenyl in Supercritical Water, Fuel, 87, 353-358 (2008).
  51. 51.  H. Assaaoudi, Z. Fang, J.E. Barralet, A.J. Wright, I.S. Butler, and J.A. Kozinski Synthesis, Characterization and Properties of Erbium-based Nanofibers and Nanorods, Nanotechnology18, 445606 (7pp) (2007).
  52. 52. Z. Fang*, H. Assaaoudi, R.I.L. Guthrie, J.A. Kozinski, I.S. Butler, Continuous Synthesis of Tin and Indium Oxide Nanoparticles in Sub- and Supercritical Water, Journal of the American Ceramic Society, 90(8), 2367-2371 (2007).
  53. 53. Zhen Fang*, H. Lin, H. Assaaoudi, X. Wang, I.S. Butler, and J.A. Kozinski, Synthesis of Nanocrystalline SnO2 in Supercritical Water, Journal of Nanoparticle Research9, 683-687 (2007).
  54. 54.  H. Assaaoudi, Zhen Fang, I.S. Butler, D.A. Ryan, and J.A. Kozinski, Characterization of A New Magnesium Hydrogen Orthophosphate Salt, Mg3.5H2(PO4)3, Synthesized in Supercritical WaterSolid State Sciences9, 385-393 (2007).
  55. 55. R. Hashaikeh, Z. Fang, J. Hawari, I.S. Butler, J.A. Kozinski, Hydrothermal Dissolution of Willow in Hot Compressed Water as a Model for Biomass Conversion, Fuel86, 1614-1622 (2007).
  56. 56. Y. Jia, L. Xu, Zhen Fang, and G.P. Demopoulos, Observation of Surface Precipitation of Arsenate on Ferrihydrite, Environmental Science & Technology40(10), 3248-3253 (2006). (Times Cited: 98, Cites/Year = 10.9)
  57. 57.  H. Assaaoudi, Zhen Fang, D.H. Ryan, I.S. Butler, and J. Kozinski,Hydrothermal Synthesis, Crystal Structure, and Vibrational and Mössbauer Spectra of a New Tricationic Orthophosphate – KCo3Fe(PO4)3Canadian Journal of Chemistry, 84, 124-133 (2006).
  58. 58.  R. Hashaikeh, Z. Fang, I.S. Butler, and J.A. Kozinski, Sequential Hydrothermal Gasification of Biomass to Hydrogen, Proceedings of the Combustion Institute30(2), 2231-2237 (2005).
  59. 59. Z. Fang*, S. K. Xu, R.L. Smith Jr., J.A. Kozinski, and K. Arai, Destruction of Deca-chlorobiphenyl in Supercritical Water under Oxidizing Conditions with and without Na2CO3The Journal of Supercritical Fluids, 33(3), 247-258 (2005).
  60. 60. Z. Fang*, T. Minowa, R.L. Smith Jr., T. Ogi, and J.A. Kozinski, Liquefaction and Gasification of Cellulose with Na2CO3 and Ni in Subcritical Water at 350 oC . Industrial & Engineering Chemistry Research43(10), 2454-2463 (2004).
  61. 61. Z. Fang*, S. Xu, I.S. Butler, R.L. Smith Jr., and J.A. Kozinski, Destruction of Decachlorobiphenyl Using Supercritical Water Oxidation, Energy & Fuels18(5), 1257-1265 (2004).
  62. 62. S. Xu, Zhen Fang, and J.A. Kozinski, Decomposition of Selected Organic Wastes during Oxidation in Supercritical Water, Clean Air: International Journal on Energy for a Clean Environment (current, International Journal of Energy for a Clean Environment) 5(2), 39-52, (2004).
  63. 63. S. Xu, Zhen Fang, and J. A. Kozinski,Oxidation of Naphthalene in Supercritical Water up to 420 oC and 30MPa, Combustion Science and Technology175(2), 291-318  (2003).
  64. 64. Zhen Fang*, S.K. Xu, and J.A. Kozinski, Flameless Oxidation of Chlorinated Wastes in Supercritical Water using Sodium Carbonate as the Oxidation Stimulant, Proceedings of the Combustion Institute29(Part 2), 2485-2492 (2002).
  65. 65.  A. Sobhy, Z. Fang, S. Xu, and J.A. Kozinski, Supercritical Water Combustion of Organic Residues from Nuclear Plants, Proceedings of the Combustion Institute29(Part 2), 2493-2500 (2002).
  66.  66. Zhen Fang, and J.A. Kozinski, A Study of Rubber Liquefaction in Supercritical Water Using DAC-Stereomicroscopy and FT-IR Spectrometry, Fuel81(7), 935-945 (2002).
  67. 67. Zhen Fang, and J.A. Kozinski, A Comparative Study of Polystyrene Decomposition in Supercritical Water and Air Environments Using Diamond Anvil Cell, Journal of Applied Polymer Science81(14), 3565-3577 (2001).
  68. 68. Zhen Fang, and J.A. Kozinski, Phase Changes of Benzo(a)pyrene in Supercritica Water Combustion,  Combustion and Flame124(1-2), 255-267 (2001).
  69.  69. Zhen Fang*, and J.A. Kozinski, Phase Behavior and Combustion of Hydrocarbon-Contaminated Sludge in Supercritical Water at Pressures up to 822 MPa and Temperatures up to 535 °C, Proceedings of the Combustion Institute28(Part 2), 2717-2725 (2000).
  70. 70.  Zhen Fang, S. Xu, and J.A. Kozinski, Behavior of Metals during  Combustion of Industrial Organic Wastes in Supercritical Water, Industrial & Engineering Chemistry Research39(12), 4536-4542 (2000).
  71. 71. M. Sasaki, Zhen Fang, Y. Fukushima, T. Adschiri, and K. Arai, Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research39(8), 2883-2890 (2000). (Ranked 30th in “95 Most-Cited I&EC Research Publications”, cites: 380-Scopus, Cites/Year = 24.8).
  72.  72. R.L. Smith Jr., Z. Fang, H. Inomata, and K. Arai, Phase Behavior and Reaction of Nylon 6/6 in Water at High Temperatures and Pressures, Journal of Applied Polymer Science76(7), 1062-1073 (2000).
  73. 73.  Z. Fang, R.L. Smith, Jr., H. Inomata, and K. Arai, Phase Behavior and Reaction of Polyethylene in Supercritical Water at Pressure up to 2.6 GPa and Temperature up to 670oC, The Journal of Supercritical Fluids16, 207-216 (2000).
  74. 74. T. Adschiri, T. Sato, H. Shibuichi, Z. Fang, S. Okazaki, and K. Arai, Extraction of Taiheiyo coal with supercritical water – HCOOH mixture, Fuel79, 243-248 (2000).
  75. 75. Zhen Fang, R.L. Smith, Jr., H. Inomata, and K. Arai, Phase Behavior and Reaction of Polyethylene Terephthalate – Water Systems at Pressures up to 173 MPa and Temperatures up to 490 oC, The Journal of Supercritical Fluids15, 229-243 (1999).
  76. 76. T. Minowa, Zhen Fang (Fang Zhen) and T. Ogi, Cellulose Decomposition in Hot-compressed Water with Alkali or Nickel Catalyst, The Journal of Supercritical Fluids13, 253-259 (1998). (Times Cited: 210, Cites/Year = 12.4)
  77. 77.  T. Minowa and Zhen Fang, Hydrogen Production from Cellulose in Hot Compressed Water Using Reduced Nickel Catalyst: Product Distribution at Different Reaction Temperatures, Journal of Chemical Engineering of  Japan,  31(3), 488-491 (1998).
  78. 78. T. Minowa, Zhen Fang, T. Ogi, and G. Varhegyi, Decomposition of Cellulose and Glucose in Hot Compressed Water under Catalyst-free Condition, Journal of Chemical Engineering of Japan31(1), 131-134 (1998).
  79. 79. T. Minowa, Zhen Fang (Fang Zhen), T. Ogi, and G. Varhegyi, Liquefaction of Cellulose in Hot Compressed Water Using Sodium Carbonate: Products Distribution at Different Reaction Temperatures, Journal of Chemical Engineering of Japan, 30(1), 186-190 (1997).
  80. 80. Zhen Fang* (Fang Zhen), A Model of a Pyrolysis Gasifier for Prediction Compositions and Flow Rate of Produced Gas, Fuel Science and Technology International (present, Petroleum Science and Technology)12(5), 705-714 (1994).
  81. 81. Zhen Fang* (Fang Zhen), An MLP Model Applicable to Rural Energy System, Energy Sources16(2), 195-208 (1994).
  82. 82. Zhen Fang* (Fang Zhen), Rural Energy Resources, Applications and Consumption in China, Energy Sources16(2), 229-240 (1994).
  83. 83. Zhen Fang* (Fang Zhen), A Biomass Pyrolysis Gasifier Applicable to Rural China, Fuel Science and Technology International (present, Petroleum Science and Technology)11(8), 1025-1035 (1993).
  84. 84. Zhen Fang* (Fang Zhen), Physical and Chemical Properties of Corncob for Thermal Conversions, Fuel Science and Technology International (present, Petroleum Science and Technology)11(8), 1037-1045 (1993).
  85. 85. Zhen Fang* (Fang Zhen), A Model of the Energy-Supply and Demand System at the Village Level, Energy18(4), 365-369 (1993).
  86. 86. Zhen Fang* (Fang Zhen), An SD Model Applicable to the Study of Rural Energy Development Strategy in Beijing, Energy Systems and Policy (present, Energy Sources)14, 213-226 (1990).



  • 1. XF Tian, Zhen Fang*, RL Smith, Jr., ZQ Wu, MY Liu, Properties, Chemical Characteristics and Application of Lignin and Its derivatives, Editors: Zhen Fang, RL Smith Jr, Production of Platform Chemicals from Sustainable Resources, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, Chapter 1, In-press, 2016.
  • 2. J. Luo, Zhen Fang*, R.L. Smith, Jr, and X.H. Qi, Fundamentals of Acoustic Cavitation in Sonochemistry, Editors: Zhen Fang, R.L. Smith Jr., X.H. Qi, Production of Biofuels and Chemicals with Ultrasound, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, Chapter 1, ISBN 978-94-017-9623-1, 2014.
  • 3. D.A. Mosuli, S. Barghi, C. Xu, and Zhen Fang, Techno-economic analysis of renewable hydrogen production via supercritical water gasification using glucose as a model compound, Editors: Zhen Fang, C. Xu, Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, Chapter 17, ISBN 978-94-017-8922-6, 2014.
  • 4. X.H. Qi, R. L. Smith, Jr, and Zhen Fang, Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids, Editors: Zhen Fang, R. L. Smith Jr., X.H. Qi, Production of biofuels and chemicals with ionic liquids, Springer Book Series – Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, p.223-254, ISBN 978-94-007-7710-1, 2013.
  • 5. F. Guo, Zhen Fang*, Solid- and nano-catalysts pretreatment and hydrolysis techniques, Editor: Zhen Fang, Pretreatment Techniques for Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, p.339-366, ISBN 978-3-642-32734-6, 2013.
  • 6. X.F. Tian, Zhen Fang*, C. Xu, Status and perspective of organic solvent based pretreatment of lignocellulosic biomass for enzymatic saccharification, Editor: Zhen Fang, Pretreatment Techniques for Biofuels and Biorefineries, Publisher: Springer-Verlag, Heidelberg Berlin, p.309-337, ISBN 978-3-642-32734-6, 2013.
  • 7.  F. Guo, Zhen Fang*, Production of Biodiesel with Solid Catalysts, Editors: S. Margarita, M. Gisela, Biodiesel, Publisher: InTech – Open Access, ISBN 978-953-307-633-1, p. 339-358, 2011.
  • 8.  Zhen Fang* and C. Fang, Complete Dissolution and Hydrolysis of Wood Rapidly (in 1.5 s) in Hot Water (in Chinese), Editor: Chinese Academy of Sciences, 2009 Report on Industrial Biotechnology Development. pp. 408, Science Press, Beijing, ISBN: 7030247892/9787030247896, p.77-89, June 2009.
  • 9.  T. Minowa and Zhen Fang, Hydrogen Production from Biomass by Low Temperature Catalytic Gasification, Editor(s): Bridgwater, A. V., Progress in Thermochemical Biomass Conversion, [Conference], 5th, Tyrol, Austria, Sept. 17-22, 2000  (2001), Meeting Date 2000, 1, 396-404.  Publisher: Wiley-Blackwell; 1st ed. (August 15, 2001),Oxford, UK, ISBN-13: 978-0632055333.
  • 10.  T. Adschiri, M. Sasaki, Z. Fang, Y. Fukushima and K. Arai, Cellulose Hydrolysis in Supercritical Water to Recover Chemicals, Editor(s): M. A. Abraham and R. P. Hesketh (Publisher: Elsevier Science B.V.), React.Eng. Pollut. Prev. 205-220, (2000). ISBN-13: 978-0444502155.
  • 11.  J. L. Sanchez, Zhen Fang and J. Arauzo, Black Liquor Pyrolysis and Char Reactivity, Editor(s): Bridgwater, A. V.; Boocock, Dave G. B.    Dev. Thermochem. Biomass Convers. 1, 294-304.  Publisher: Blackie, London,UK (1997). ISBN: 978-0-7514-0350-3.


  •   1. Method, Equipment and Applications for Fast Complete Dissolution and Hydrolysis of Lignocellulosic Biomass. International PCT invention patent #: PCT/CN2008/000623, application date: March 28, 2008; disclosure publication date: Feb. 12, 2009, publication#: WO 2009/018709 A1;
  • Chinese invention patent: CN101638442-A CN101235095-A (Aug., 2008); ZL200710141265.3 (June, 2013) (GRANTED).
  • US patent#: 8268126 (Issue date: 09/18/2012).
  •   2. A Magnetic Solid Catalyst and Its Applications (in lignocellulose hydrolysis). Chinese invention patent: ZL201010243359.3, May 2012 (GRANTED).
  •   3. A High-efficient and Energy-saving Device for Lignocellulosic Biomass Hydrolysis.  Chinese invention patent#: ZL201020562302.5, Jan. 2011 (GRANTED).
  •   4. A Reactor System for Ethanol Production, Chinese invention patent, ZL200920253718.6, June 2010 (GRANTED).
  •   5. A Novel Method (by Using Solid Base Catalyst) for Hydrolysis of Lignocellulosic Biomass. Chinese invention patent: CN101638441-A (Feb, 2010); ZL200910094892.5 (April, 2011) (GRANTED).
  •   6. A Novel Method (by Using Solid Acid Catalyst) for Hydrolysis of Lignocellulosic Biomass. Chinese invention patent: CN101638442-A (Feb, 2010); ZL200910094893.X (April, 2011) (GRANTED).
  •   7. A Novel Process for Continuous Extraction of Curcin from Jatropha Seeds. Chinese invention patent: CN101463073-A (June 2009); ZL200910094015.8, Aug. 2011 (GRANTED).
  •   8. A Continuous Reactor for Bio-Diesel Production. Chinese patent: ZL200820081793.4, July 2009 (GRANTED).
  •   9. A Method and Equipment to Continuously Produce Bio-Diesel from Jatropha Oil. Chinese invention patent: CN101381613-A (March 11, 2009); ZL200810058974.X, Aug. 2011 (GRANTED).
  •   10. A High Pressure and High Temperature Flow Reactor for the Production of Biofuels.
  • Chinese patent (utility model): ZL201320359907.8, Dec. 2013 (GRANTED).
  •   11. An Autoclave Used for Separation and Recovery of Magnetic Catalysts for Biofuels Production.
  • Chinese patent (utility model): ZL201220038727.5, Sep. 2012 (GRANTED).
  •   12. A Magnetic Solid Catalyst (CaFe2O4) and Its Applications. Chinese invention patent:  CN102513000-A (June, 2012); ZL201110334924.1 (August, 2013). (GRANTED).
  •   13. A Method to Pretreat and Hydrolyze Microcrystalline Cellulose. Chinese invention patent:  CN102382870-A (March, 2012); ZL201110227943.4 (May, 2013). (GRANTED).
  •   14. A Method for the Production of Biodiesel Catalyzed by Solid Acid Derived from Lignin. Chinese invention patent: CN102188995-A (Sep. 2011); ZL201110080225.9, March    2013 (GRANTED).
  •   15. Method for the dissolving and rapid hydrolyzing of lignocellulosic biomass, device thereof and use of the same. Chinese invention patent: CN101974161-A (Feb. 2011); ZL201010297515.4, Oct. 2012 (GRANTED). International PCT invention patent, PCT/CN2011/001099, US patent#: 9243303 (Issue date: 01/26/2016).
  •   16.  A Micro Reactor for the Hydrolysis and Liquefaction of Biomass.Chinese patent (utility model): ZL201320359823.4, Dec. 2013 (GRANTED).
  •   17. A Method to Produce 5-Hydroxymethylfurfural by Solid Acid Catalysts.Chinese invention patent: CN102399201-A (April, 2012); ZL201110376665.9 (April, 2014). (GRANTED).
  •    18. A Continuous Flow Reactor for the Production of Soluble Sugars and Biodiesel. Chinese patent (utility model): ZL201420785283.0, (March, 2015). (GRANTED).
  •    19. A Method to Synthesize Mesoporous Activated Biochars. Chinese invention patent, ZL201310331615.8, (March, 2015). (GRANTED).
  •   20. Method of Completely Dissolving and Rapidly Hydrolyzing Cellulose, and Uses of Said Method. International PCT invention patent, PCT/CN2010/001253 (2010).
  •  US patent#: 9115215 (Issue date: 08/25/2015).


  •   1. C.Y. Yang, Z.F. Xu, Zhen FANG and 4 others, Jatropha nigroviensrugosus CY Yang, Certificate#: Yunlin Yuanzhi Xindeng 20110037, The Forestry Department of Yannan province, Dec. 15, 2011.
  •   2. C.Y. Yang, Z.F. Xu, Zhen FANG and 4 others, Jatropha curcas cv. multiflorm CY  Yang, Certificate#: Yunlin Yuanzhi Xindeng 20110036, The Forestry Department of Yannan province, Dec. 15, 2011.



  •  1. Biotechnology for Biofuels (Impact factor 6.2) (2012-now).



  • 1. Section Chair, Science Advisory Board member, BIT’s 2nd Annual World Congress of Bioenergy-2012 (WCBE-2012), “Renewable Energy for Sustainability”, April 25-28, 2012, Xi’an, China.
  • 2. Section Co-Chair, Science Advisory Board member, BIT’s 1st Annual World Congress of Bioenergy-2011 (WCBE-2011), “Developing Bio-renewable Energy from Nature”, April 25-29, 2011, Dalian, China.
  • 3. Section Chair, Science Board member, Seminar on sustainable utilization of plant resources, March 13-15, 2011, Menglun, Yunnan, China.


方真 封底2